Introduction
1.1 A timeless problem.

A major conceptual problem in quantum gravity [ 1] 15 the 1zsue of what time 1z, and how it has to be treated in the [feEitae The importance of this 1ssue was
recognized at the beginming of the history of quantum grawity [2], but the problem is still open, and haz recently recerved mereasing attention [3]. The controversy
about time m quantumn gravity does not refer to a umquely defined problem, the quarrel has been over the questions even more than over the answers [4-17]. In
this paper we propose a point of wew on the puzze and a physical hypothesis for ts solution.

The physical hypothesis that we put forward 15 the absence of a well defined concept of time at the fundamental level

We shall prowide a precise mathematical form of this hypothesis. For the moment, we may illustrate it as follows. We suggest that at the Plank scale dynmamical
systems cannot be descnibed as evolving in a universal time quantity ¢, fore precisely, they cannct be descnibed az hamiltonian systems in the strict sense.
Instead, evolution may only be defined with respect to physical clock variables.

A wall be discussed, this revised concept of time 15, m a sense, unplicit i classical general relatinty. In this paper, we show that quantum mechamcs can be
naturally extended in order to mcorporate it. The idea is not new Litis implicit m several works (see for mstance refz [2,5,7.9,17]). But to our knowledge it has
never been defined and studied in detadl

The main aszerfion of this paper 13 that there 13 a natural extension of canomcal Heizenberg -picture quantum mechanics, which remains well-defined in the
absence of a well-defined Schrédinger equation, and in the absence of a fundamental tine. This extension 15 well-defined both in terms of the coherence of the
formalism, and from the point of view of the wiability of the standard probabilistic interpretation.

The key step that allows us to define this extension 15 a technical result on the observables of theory. The result is that, even in the absence of a fundamental time
and of an exact Schrédinger equation, there are gauge imvariant observables {commuting with the hamiltonian constraint) which describe evolution with respect to
physical clocks. These obzervables are self-adjomt operators on the space of the solutions of the Wheeler-De Wit equation.

Thus, the solubion we propose to the time 1ssue i quantum gravity 13 the following, At the findamental level, there i3 no absolute time in terms of which a Schré
dinger ecquation could be defined The fundamental theory 15 described by the extended Heisenberg-picture canonical quantum mechanics, equipped with the
standard probabilistic interpretation. Ewolution with respect to physical clocks i3 described by self~adjoint operators corresponding to the observables we
mentioned [12].

In the course of the paper, this picture will be motivated, detalled and shown to be consistent. Of course, only a future complete quantum gravity theory can
establish if 1t 1s also realistic,

The problem of time arises in the canonical formulation of the theory as follows . In quantum general relativity (as in any difeomorphism mvariant quantum Held
theoty), the Schrédinger equation is replaced by a Wheeler-De'Witt ecuation, i which the time-coordinate has disappeared from the formalism. An accepted
interpretation of this fact is that phvsical time has to be identified with one of the internal degrees of freedom of the theory itself (Gruternal time)[4]. Evolution “in
time’ iz identified with evolution with respect to this internal time. We follow this interpretation. Tn this philosophy, it has been shown [2,6,13,14] that a Schré
dinger equation may emerge from the Wheeler-De Wit equation.

However, it 1z very likely that, for any choice of the mternal time | only an approximate Schrédinger equation emerges. In other words, the evelution in the
mternal tune 15 described by a Schrédinger equation only within some approzmation. This situation 1s satisfactory as far as the connection between the theory
atid the world that we zee iz concerned. In fact, whatever experiment we may petfortn, we are always well inside this Schrédinger approzmation. But a theory
that malkes sense only within an approxmation 18 niot a satisfactory theory, Thus, the following question 15 relevant. Does the theory make sense bayond the Schr
ddinger apprommation 7

If one attempts to take the theory seriously beyond the Schrédinger approzimation, several difficulties arize. Just to mention one of them: if the Schrédinger
eruation 15 valid only to first approzmation, then the norm of the state iz only approximately conserved. Can a probabilistic nterpretation be mantained, if the
notm 15 not exactly conserved ¢

Different attitudes towards the physics of the Wheeler -De'Witt equation outside the Schrédinger approzmmation can be found in the kterature. An dhrminating
discussion on the disagreements on the 1ssue of time iz given i ref [19]. Here, we quote some of these attiudes; the list and the references are exemplary only
and are by no means exhaustive.

a) The theory makes sense only if an "exact internal titme" i3 found such that an exact (rather that approsmate) Schrédinger equation holds [ 20]. In this case,
there wouldn’t be any non-Schrédinger regime.

by The theory outside the Schrédinger regime requires modifications of the basic structure of quantum mechanics, for mstance we should use mfinite norm states,
ot give up canonical (e, Hilbert space) quantum mechanics [7].

o) Because of these difficulties, a quantum mechanical theory of the gravitational feld deoes not malke sense, and a radical revision of the basic ideas of quantum
techanics is needed for quantum grawity [21].

d) Standard quantum mechanics, suitably interpreted, can be used alzo for the non-3chrédinger regime [2].

The solution we propose m thiz paper 15 more or less distinct from the ones histed. We suggest that the basic structure of canonical quantum mechancs, namely
Hilbert space of states, self-adjomt operators representing observables, probabilistic mterpretation and wawve function collapse, may stll accommodate quantum
gravitational physics. An exact nternal time 15 not required, nor particularly relevant for the quantization. Eather, it 15 the concept of tine itself that needs to be
rewvised. The formalism of classical mechanics (as we will elucidate) 15 already capable of accommodating this revised concept of time. Canonical quantum

mechanics, it turn, can be very naturally extended in order to incorporate this rewised concept of time . 2

For clarty, let us say that here we do not address the problem of the existence of an exact internal time in general relativty. Instead, we assume: first, that a way
to obtam an approzmate descrption of the world as we see it (wath time) can be extracted from the theory; second, that this description 15 walid only wathin the
apprommation. As far as the problem of the choice of the internal time 15 concerned, we refer to the literature [5, 8], and in particular to the recent worle of A
Ashtelear on the defimition of an mternal tine i the weals feld bt [6]. See also the wotks on the Machian cosmological time [14] and on the observables in
general relativity [ 16].

The paper iz organized as follows. In section 1.2 we introduce the basic physical hypothesiz. In section 1.3 we motivate this hypothesis by discussing the concept
of time in classical general relativity. In section 2.1, we show that there 15 a formulation of classical mechanics which allows us to treat dynamical systems without
maling reference to the untversal time. In section 2.2, we discuss the obzervables that descnibe the evolution with respect to the clock time. In section 3.1, the
quantumn mechamcs of the systems without tune 15 defined. In sechon 2.2, two techmcal 1ssues are mvestigated: the quantization procedure and the problem of
choosing the scalar product. Section 3.3 extends the results on the observables that descnibe evelution m clock time to the quantum domean. In section 4.1, the
proposed solution to the titne issue m quanbim gravity 15 summarized. Section 4.2 contains a dizcussion of the difficulties of this solubion and some speculations.
Section 4.3 containg the conclusions.

There are three papers which are strictly related to the present one and complementary to it In the first one [13], a model with approsmate Schrédinger
eruation and no absolute time 15 mtroduced. Its quantization 18 a concrete example of the ideas exhibited in the present paper. In the other two papers [ 16], the



problemn of the observables of general relatinty 15 studied, respectively m the classical and quantum contezt. Cravge-mvanant observables of the kind mtroduced
in this paper are constructed.

1.2 Clocks and abhsolute time.

Perception of the flow of time 1s probably an elementary exzpenence. In MNewtoman physics, as well as in standard quantum mechanics, 1t 1z azsumed that this
expenience corresponds to the exstence of an absolute quantity, the tme. This quantity, namely the time of Mewtoman, hamiltonain or quantum mechanics, wll
be denoted ¢ .
To measure £ we usze clocks. A clock 13 a system with a vaniables, for instance the position of a hand, which has a sunple behavior m ¢, In this paper, we shall
denote a clock vanable (the position of the hand) as T, we shall denote vanables of different clocks as T, T 7 . Goodclocks may have, for mstance, a
linear behawior in ¢

i) = ai
Tt is an elementary-physics-course observation the fact that we never really measure £, rather, we always measure T 5. The value of a physical quantity &,
measured at a time £, 15 denoted O ¢ ). Since time 1z determined by measuring a clock wanable T, what 15 actually measured iz not 0 £ and 77 ¢ 3, but only the
combined gquantity (7 7). Thus, £ deesn’t ever appear m laboratory measurements.

The observation that we newer reach ¢ i the experiments, but we only reach T, f T, 13 not a trivial observation. Since ¢ cannot be observed, eq.(1) can
never be verfied. We check clocks one against the other; namely, we measure 77T id 3, f( ™9, .. and so on Correspondingly, the problem of constructing
clocks has historically been, and still 15, a delicate problem. Galileo used iz pulse to measure the oscillations period of a pendulum and to discover that they
were isochronous. Few years later doctors were using a pendulum to measure the period of people’s pulse and to check whether they were isochronous.
Indeed, what we have iz alarge collection of clocks. The clocks agree one with the other within certain unavoidable expenmental errors. Tp to a certain
approzimation, they provide a reasonable standard, agamst which dynarmical theories and new clocks can be checked. But anytime there 15 need of measuring
time at smaller scales, experimentalists find themselves in the zame situation as Galileo: the pulse for measunng the pendulum and the pendulum for measunng the
pulse. From the experimental pont of view, ¢ can be defined only as the 1dealized extrapolation of the {concurrng) value of a large ensemble of clock vanables.
If'# can never be reached experimentally, still it plays a major role i the conceptual Famework of Newtonian and quantum mechanics. Indeed, MNewton or
Hamilton equations, as well as the Schrédinger equation, are grounded on the undetlyving assumption that there exists a £, in which the dynamics is defined.
There are many basic differences between the absolute time variable ¢ and the clock variables T, T, T, .... Any realistic physical clock variable satisfies eq.(1)
only within some approximation. £ 15 assumed to run from minus infinity to plus infinity; clock variables may vary within a bounded interval Tn general, the
agreement between the clock wariable T and the assumed absolute ¢ iz given for granted only down to certain scale. Below that scale, higher order physical
effects, systematic or statistical errors and quantum fluctuations 3, jeopardize the performance of any clock: If T lock carefully at the hand of my watch, I see that
it proceeds mn bttle jumps. These differences between £ and T unply that, given a vanable O £ ) and a clock vanable 77 £, m general it 15 not possible to
dezcribe the evolution in clock tune & 77 i harmiltortan form.

Given these observations, we may now state the basic physical idea of this paper. We put forward the hypothesis that the idealized absolute hamiltonian, or Schr
ddinger, time £ cannot be defined down to the Planck scale. At the Planck scale it 15 still possible to tall of the clock variables T, f . ..., but it does not make
sense to tall of the absolute fine .

Wlore precisely, we suggest that the theoretical framework needed for understanding quantum gravity recuires that one abandons the idea of the existence of the
universal quantity £, to which the specific clock variables are approximations. Only the quantities O T3, (2 T ), ... are defined at the fundamental level. Since
the evolution in the clock times does not admit a hamiltonian description, sitmilatly, we do not expect that a Schrédinger-equation description could be possible.
In the next section we motivate this hypothesis. In the following ones, we show that the theoretical instnuments for handling the absence of ¢ already esst in
classical physics (part 2), and can be easily constructed i quantum physics (part ).

1.3 Time in general relativity.

The first adjustment of the idea of a universal time ¢ follows from special relativity. Tn special relativity £ iz replaced by a class of related times: the Lorentz-times
of all the different Lorentz obzervers. Equivalently, the hypothesiz of the exstence of £ 15 replaced by the hypothesis of the existence of the Mfink owski manifold
with its peculbiar metric structure.

A much more radical and subtle modification of the concept of time 12 implicit in general relatraty. In wiew of the quantization, and in particular in wiew of the fact
the Schrédinger equation recuires £, the concept of tine m classical general relatraty has to be accurately considered.

As a preliminary step, let us consider the motion in an arbitrary assigned gravitational field, namely in a given solution g ,,, of Einstein equations. ¢ Ewery object

travelling along a world line /i g, measures a tne flow which 15 given by the proper time along /. Thus, there 15 a definiion of a time quantity for every given

solution g, of Einstein equations and every given trajectory / in this solution. By itself, of course, the independent time-coordmate x? (areument of g u( Zx° J)]

1z not a physical time: physics, ndeed, can be reformmlated in terms of any reparametrization of .

In quantum gravity, we are not concerned with the motion i given grawitational felds, but wath the dynamical evolution of the grawtational Seld itself Emstem
equations provide the evolution of the gravitational Beld i x7; but x© iz not a physical time. In which physical tirme 15 the evolution of the grawitational field grren 7
A well known, this question is far from being trivial. We wish we were able to fortulate (compact space) general relativity as a hamiltonian system evolwing in a
physical time parameter ¢, but such formulation has never been constructed.

Let uz begn to study this question in physical terms. In non-grawitational physics, the experimentalist has a clock and describes the evolution with respect to it
The clock iz represented m the theory by the mdependent vartable £ ow let us consider gravity., Assume the expenmentalist has a clock and measures the
evolution of the grawtational feld with respect to this clock. To which vanable of the theory does the clock correspond? The clock cannot be identified wath the
time-coordinate x° for the following reazon. The evolution of the gravitational field in the clock time is uniquely determined by the initial conditions, while the
evelution of g, 1n x%, as given by Einstein equations , 15 under-determined.

The solution, of course, 12 that the clock 15 a physical objects; s motion and its rthythm are determined by itz equations of motion. If we consider the equations
of motion of the gravitational field axd the clock, then the problem is not under-determined. But the gravitational field enters the equations of motion of the clock
(without gravitational field the ecquations of motion of physical objects cannot even be written). The dynamics of the clock cannot be disentangled from the
dynammics of gravity itself 3 In order to calculate the evolution measured by the experimentalist, we have to evolve the grawmtational field axd the clock variable

together, then solve away ? x°, and obtain gravitational quantities as fanctions of the cleck variable. ® The conchusion is that, in order to predict the evolution in
the physical clock tume of the grawtational feld, we have to consider the coupled grawty+colock dynamucal system.



The same conclusion can be reached in a formal way as follows. In any theory in which there 15 gauge invariance, we must assume that only gauge-ivariant

quantities are observable [26]. Because of the general covariance of general relatvity, gauge -invanant quantities must be mdependent of the coordmates ? x°.
Let us focus on x°. Mo quantity that depends upon 7 can be gauge-invariant. Indeed, 1t iz possible to forrmilate general relativity without even referring to x9, as
n the Hamilton-Jacoby formulation.

It 15 not easy to construct (local) gauge -invanant quantities in general relativity. In principle, nothing forbids that observables i pure general relativity could be
constructed by expressing certain gravitational degrees of freedom as functions of certain others. In practice, this has never been completely achieved
theoretically, and seems hopeless expenimentally. To our knowledge, the only way to construct gauge-inwariant observables in a grawvitational theoty is to
consider general relativity coupled with matter and to express the gravitational degrees of freedom as functions of the matter degrees of freedom. Gauge invariant
guantities obtained in this way are constructed in ref [16]. In any case, we have to solve away x° and express certain degrees of freedom as functions of others.
Among these others, we identify the physical-time degree of freedom.

The conclusion of both the physical and the formal discussions 15 that i general relatinty, physical time has to be identified with one of the degrees of freedom of
the theory itzelf (the "clock") Such definttion of time 15 often referred to as mternal time.

Tnternal times differ from a hamiltonian time in many respect. First of all, the theoty does not single out one or the other of these internal times. Second, none of
the (proposed) internal times haz all the features that charactenze the ¢ vanable of hamiltonian and quantum mechanics. For instance, reasonable internal-time
variables may grow (in x %) up to a maxmum value and then decrease. More precisely, there is no proposed internal time such that the theory can be expressed
as a well defined hamiltondan system evolwing in this internal titme. Third, by definition an internal time refers to a specific physical wariables, unlice the ¢ quantity,
which iz supposed to be universal Thus, general relativity treats time in a peculiatr way, as compared to pre-relativistic physics. The absolute quantity ¢ has
disappeared. In itz place, there are different possible internal titmes, related to specific physical variables.

Mow, the internal times can be identified with the clock variables 7, 77, 7", ... discussed in the previous section. Thus, maybe quite surprisingly, general relativity
does not prowide the evolution in an absolute time & £ ) and 77 ¢ 3, but only the obzervable evolution 2 T More precisely, there exsts a time quantity in the
theory, which iz x°, but the evolutions O x7 3 and ¥ x° ) are non-gauge -invariant, and therefore non-observable: the absolute quantity £ has been replaced by
an arbitrary and unebservable gauge parameter x°. The obzervation made in section 1.2, that only &{ 7 can be chserved, is incorporated in the formalism of
general relativity.

As far as the classical theory 15 concerned, these these fine distinctions are a bit superfluous. After all, once the metne has been calculated, a pseudo-riemanan
manifold, does not seem to be conceptually very different from a Minkowski space. " However, the consequences of the abowe dizcussion are far reaching at the
quantum level. As Wheeler first emphasized, as i the quantum thecory the concept of trajectory disappears, in quantum gravity there is no pseudo-nemanan
matifold at all More precisely, quantum observables are attached only to gauge invariant quantities. Thus, there is no room in the quatitum theory for O 27
and T 7). Operators correspond only to gauge-invariant quantities. In the quantum demain, the absence of the absolute time £ is not ntuitively remedied by a
picture of the pseudo-nemarnian manfold.

The only way out that we see, 12 to completely abandon the idea of absclute time. Only the evolution with respect to clocks malkes sense. In certam physical
sttuation, or for particular solutions of Emstem equations 8, we may idealize these clocks m tenms of £, At the Planclk scale, we may not.

In standard quantum mechanics, the Schrédinger equation regquires the exstence of a ¢, which corresponds to the classical hatltoman tine. To do quantum
gravity, an alternative formulation of quantum mechanics is needed. This formulation should not recquire the idealized quantity ¢ as part of the basic formalism,
istead, it should be able to directly deal with J3( 7)) quantities.

But, before going to quantum mechanics, if we abandon the 1dea that time 15 one of the conceptual bedrocks of the theory, does it still make sense to do physics,
calculate measurable quanbties, and develop a consistent and satisfactory picture of an evolving umverse 7

Classical dynamical systems without time.
2.1 Mechanics without time: pre-symplectic mechanics.

The possibility of describimng dynarmical systems without hamiltoman time has to be frst explored m the context of classical mechanics.
Mechamics may be defined as the general theoty of the evolution of physical systems i time. From thiz point of wiew, time 15 required for the very defitution of the
elementaty mechanical concepts. For instance, the state of the system is defined at a given time. Tn such a conceptual frameworl, ¢ is required.

However, there existz an alternative starting point for mechanics. This iz provided by presymplectic mechanics. This formulation does not require the abzolute
time for defining the basic concepts of the theory.

We shall dlustrate presymplectic mechanics by first showing that hamitontan mechamcs admts a reformulation m terms of a presymplectic space, and then
noticing that this reformulation does not require the vanable that represents time to be specified, or even defined. Eeaders farmliar wath presvmplectic mecharics
tnay skip this presentation.

In presymplectic mechanics, which is an elegant generalization of standard hamiltonian mechanics, a dynamical system iz just defined by a presymplectic manifold
(O, w) Let (5w A)be aharmdtontan system: 515 the phase space, w 15 the symplectic form, and & 1z the hamultornan, Let g, 2’ be cancnical coordinates

en S (we = dp TA dg ). The dynamical systern 1z completely described on the space O = & R, with coordinates ¢, pi, i, by the presymplectic form
W =wy—adH p, g, 1) A di
The motions of the system are the integral lines of the null vector field of w (orbits, or trajectonies, of w) We denote this vector field ¥
iw = P, =0
In the coordmates on O that we are considering, the wanable ¢ has a preferred role, as it 1s clear from eq. (2). This preferred role identifies £ as the tine vanable.
The presymplectic space, however, has a geometric, coordinate-independent meaning, lilke the phase space. In a different coordinate system on O (zay
2 ", tY, wmay have the same form as in eq.(2), but with £ substituted by a different variable, say £,
w=ws—dH(p' ¢ 'y nd
Thus, the presymplectic formulation may accommodate different time vaniables. For mstance, it tnay accommodate the diferent Lorentz times of special

relatrvity. The presymplectic formalism, ideed, prowides us with the only way to write a relattrstic dynamical system in canonical form without destroying manife st
Lorentz covariance.

Time evolution iz described in the presymplectic formulation in a peculiar way. Each orbit of w represents a possible motion of the system. An orbit defines a
correlation between two different variables of the system. For mstance, every orbit defines a finction ¢ £ £ ). If £ 15 our tune vanable, then this function descnbes

the evolution of . in £, But the same orbit also defines the fanction ¢.( 7% Thus, had we chesen 27 as our time variable, the presymplectic forrmilation would



equally well provide the evolution in £”
A state of the system 1z defined as an orbit. Mote that thiz definition of state does not refer to a particular cheice of the time variable, nor to a particular moment
of time. Rather, it represents, in a sense, the entire history of that particular state. Looking ahead at the quantum contezt, it 13 meaningfil to refer to this kind of
definition of state as Heisenberg state.
The chservables of the system are defined as the scalar fimctions O on O that are constants along the trajectories (the orbits)

ney=re9.0 =10
The functions ke ¢, £ ), which describe time evolution, are also observables in the sense of eq.(5). This statement may seem strange, but it will be carefilly
clartfied in the nest section
IMote that there 15 no observable corresponding to a genenic vanable g, (unless g, is a constant of the motion). The observable 1s the function g,(¢ ). More
precizely, there 15 one different observable for every real value of £,
A5 a simple example, consider the presymplectic description of a free relativistic particle. (x7, x%, p_) are coordnates on C' and

3
w = E dpa/\dxa—d“'})z-i—mz Aodx®
a=1

=012 3a = 1,2 3fromnow on). The well known constants of motion P, = p_, F, = 1”'?:-)2 +m? and M = 2P —x"P" are constant along
the trajectories generated by w. They are physical ebservables. The observables that describe the evelution in x° will be constructed in next section.

Az the example suggests, presymplectic systems often anse m theoretical physics m the form of constramed harniltoman systems with weakly vanishing canomeal
harniltorian. * Indeed, the constraint surface of these systems, equipped with the {degenerate) two-form mduced by the unconstramned-phase -space symplectic
two-form, 15 the presymplectic marmfold. This presymplectic structure mcorporates all the relevant mfcrmation on the system. w i eq.(6), for mstance, 15 the
two-form on the constraint surface X x°, p al = p2 —m? = 0induced by the unconstrained phase space symplectic form dx ™ A dp o Inthese systems,
the constraint i often denoted hamiltoman constraint.

Tn the next section we will show that the ohservables ¢ ¢ ) satisfy

g = —dH, S4(1) =X(g) = {4(t). H}
(where we have used also the more familiar Poisson brackets notation). Mote that time ewvolution can be described as the existence of a particular structure on
the set of the observables: there exists a class of observables of the form ¢ ¢ ) such that the ¢ evelution iz generated by an hamiltordan function & (in the sense of
e (7). We call this structure on the set of the observables a fise siructure. Equivalently, a time structure is a spliting of w as i eq (2).
In conclusion, m presymplectic mechanics the statez of the system are represented by the orbits of w, and do not evolve. Observables are represented by scalar
functions on O, constant along the orbits. Mote that the defiration of state and of observable does not malke any reference to the concept of time. This 13 why
presymplectic dynamics may describe different times for the same system.
What interests us here is a possibility offered by the presymplectic formalism which is more radical than the possibiity of accommedating different times. Since
presymplectic mechanics does not require the existence of a time £ for the definition of the basic mechanical concepts, it can also describe systems in which there
iz no hatiltordan titne ¢ at all

Ilore precisely, there are presyioplectic dynarmical systems ( O, w ) which are »#of hamiltoman systemns % Thege system do not admut a tne structure " For

instance, the trajectories of w may be closed. We define a presymplectic dynarmical systetn that has no corresponding hamiltoman formulation dysarmical system

withaut fime.

A simple example of a presymplectic dynamical system without titme i3 given by the constraint surface C of the constraint
K=gl+ad+pi+p5-M~0

Zimce O 15 compact, it does not admit a time structure, because a time structure inphies the decomposiion O = 2 » B, where K1z the real ine. Thus, there iz

no harmiltoman system corresponding to this presymplectic system.

In the dynatnical systems without time, one can still talle of states (the orbits of w), of obzervables and alzo of evolution. In fact, the orbits still deterrmine a

functional relation between different variables. One variable, say ¢ in the model (8), can be interpreted as a clock variable. Every orbit defines the evolution

(N g, ) for any other vaniable (! as a function of ¢, But g dees not have the properties that characterize the hamiltoman time £, so that the evolution in g

cannot be described as a hamiltoman evolution. For mstance, there are values of ¢ | which are not reached by certain trajectories. This cannet happenin a

hamiltomnian system.

The physical mterest of the systems with no tume 15 that they can be mterpreted as systemns descnbing the evolution with respect to physical clocks, as opposed

to the evolution with respect to the absolute time £ Dynarmical systems of this kind arize in theoretical physics. Examples are given by certan cosmological

models [2], by any topological feld theory [22], by the Barbour- Bertotti model [13], and many others.

The example par excellenca, however, iz of course general relativity (on a compact space). The ADM constraint surface, equipped with the two-form mduced

by the symplectic two-form of the ADM phase space is the presymplectic mamfold. General relativity can do without an absolute hamiltoman time because as a

dynamical systemn general relativity 18 not a hamiltoman system, but a presymplectic system.

e do not regard the lack of a (natural) harmltontan description of general relatraty as a faling of the formalism. Instead, we talke it as a profound mndication that

the absolute time £ 13 not a physical quantity, and that only evolution with respect to clocks iz obzervables.

The suggestion of this paper is that this indication has to be taken seriously. If so, it has to be extended also to quantum mechatdcs.

2.2 The description of evolution: constants of the motion that evolve.

In the previous sechon, a problem was left pending. The general defimtion of obzervable, namely eq.(2), seems to be i contradiction with the statement that the

evolution of a variable ¢; as a function of another variable £1s observable. In this section, we show that this contradiction does not exist. The analysis will be

rather technical; but it 15 on a technical point concerning the exstence of these chservables that the hypothesis we are proposing relies. 12

“We azsume for simplicity that the presymplectic system 15 defined by a (hamiltoman) constramt X on a phase space g,,, p,,, # = 1, ... N We smgle cuta
variable on the phase space, say g, which we use a clock variable. For the moment, we assume that ¢ i3 a harnilfonian tire.

The defirition (3) of observable, i3 equivalent to the requirement that an observable O is given by a function O ¢ .. 2, ), which has vanishing Poisson brackets
with the constraint £ The question we address is: how can such quantities, constant along the trajectonies generated by &, describe the evelution ¥ The answer
1z that there do exmst observables that satisfy eq.(5) axd represent the evolution in ¢ ;. We now define these observables.



Let us focus on another variable, say ¢, 1 = 2, .., N We want the observable that represents the evolution of ¢, as a function of . As we mentioned, this
will not be a single observable, but rather a one parameter farnily of observables, each one representing the value of g, at a different walue, say £, of the clock
variable ¢ . Let us call .0 2 ) these observables. There iz one observable O ¢ ) for every real number £; O £ )15 an observables, namely a function on & {or
the restriction to O of & function on the phase space)
Q) =0dtg, py)
The ¢ dependence of O ( £ ) should net be confused with its dependence on O 40 ¢ ) must be constant on the orbits for every £ m order to be observable.
And 1t should be equal to the function g { g1 ) i any point of C'm order to describe what we want 1t to describe. The key point s that the two requirement are
not contradictory. In fact, we define the observable &0 ¢ ) for every real mumnber £, as follows.
O 8 iz constant along each trajeciory, and on eqch frqjectory it has the numerical value equal fo the value of the variable g in the point P where
that irgjectory intersecis g = L
Equivalently, &4 £ ) 1z defined by the tweo equations
Odtg, 2n ). Klgu 2y ) =0,
Q62,92 93, . Pn) = 45
The first equation implies that .0 2 1 is observable, namely constant along the trajectories. The second determines the value of &4 £ ) on any trajectory. This
value i the numerical value obtained by looking for the point ¢y = £ along that trajectory and reading out g, in that point. In any point P that les in a trajectory

£, the function 0.0 215 equal to the function ¢,{ ¢, ) determuned by /. We denote the observables defined by equations like eqs.(10-11) evadving constants af

the motion or evalving consianis. 13

Consider the presvmplectic system that represents the relativistic particle, defined in the previous section. The observables X° £ ) that describe the evelution of

x% az afunction of x° are
2

S A

V7 m?

It is easy to check that eqs.(10-11) are satisfied. The second one 15 tnmediate. The first,
Eext p o) pt-m? =0,

follows directly from the fact that X°( ¢ ) can be expressed as a finction of the well known constants of the motion Py, JiF a

Xex® p,) =2~ (x%—¢)

a8
X(ex p,) = ;:f +ﬂi—a-
The last equation shows that in any point of any trajectery, X°( £, seen as a function of 2, iz equal to the function x°( x° ) determined by that trajectory. Thus,
X% ¢)1s afinction on the phase space which is constant along the trajectories generated by X, but describes the evolution of 2% in x©.
Evolving constants can be constructed for any finction g = g¢{ ¢,,. 2, ), and for different cheices of the time variable ¢ r = g  g,,. 2, ). The evelnng

chaervable O 7) which gives the evolution of ¢ i the clock tine ¢ pis defined by the two equations
(AT)LE =0,
Hlgr) =g,
where the dependence upon the coordinates iz not indicated. The explicit form of these observables iz obtained by solving the dynamics generated by the
constraint (geometrically, thiz amounts to construct the orbits) and inverting the solutions of the equations of motion. From the defining equations, we get

Llenk) = 0.5,

which can be used to propagate O Tl in T
In a genenic dynamical system, one 15 not able to solve the dynamics exactly and to construct the evolwng constant in explicit form. Howewer, the evolnng
constant are always defined by eqz.(15-16). In the presymplectic theory, in a zense dynamics has been reduced to kinematics. If we know the expression for
any observable O £ for every £, then we know everythuing about the system, and the dynamics 15 solved. This 15 analogous to what happens in Heisenberg
mechanics. If we know every Heisenberg observable Q(.ﬁ 3 for every £, the dynamics 15 solved. Emematics becomes non-trwal: it 15 non-trisal to construct the
abservables.
Ifthe dynarmical system admits a e structure and ¢, 15 a good hariltoman time, then £ = p, + H, where the harniltonian & dees not depend on the
motnentum P, conjugate to ¢, In this case, eq.(17) becomes

Nt

= {g. 4}.
]
since & does not depend on p,, the comrmutater of g with 5 15 the same as the commutator of O £ ). Therefore
8 e
=1 = (), H).

This 15 the Hamilton ecuation of motion. Thus, in a hatmltontan systemn the evolving constants are nothing more than the usual observables, seen as functions of 2.
Tn a system without time, it iz still possible to define evolving constants analogous to the ones just defined. These are the observables that describe the evelution
in the clock time g p The eveolving constants of the system without time eq.(8) have been constructed in ref[15]. In the general case, the Hamilton equation of
motion {19 does not hold. Hamilton equation 1s replaced by equation (15, which 12 more general .

To summanze, the defirution of state and observable m the Harmltoman formalism recuires the exstence of a time £, which 1s absclute and Hxed once and for all.
By contrast, the definition of the formal structure of the dynatical theory m the presymplectic formalism does not require £ Evolution with respect to a dynatrical
variable ¢ p, chosen as a clock, 15 described by a particular class of observables O 7). The basic equation that O 77) satisfies 15 eq.(13). If the system admits a
harniltoman formulation n the tune vanable ¢, this equation reduces to the Harnidton evolution equation.

Quantum mechanics without time.
3.1 Extending quantum mechanics.

Can the hypothesis of the absence of the absolute tume be mecorporated in quantum mechamcs 7 Is there an exsting formulation of quantum mecharics which
does not require £ to exst ¥ Is there a form of quantum mechanies that extends Schrédinger-equation quantum mechanics, i the same sense in which the
wreormtlerte merhanicre evtends the Hamilton ematons fmechaticrs 7
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The answer iz almost. To define the Schrédinger picture a time variable ¢ is needed. & Schrédinger quantum state iz defined as the state of the system at time £,
precisely as a point of the phase space represents a state of the classical system at a time ¢ However, in the Heisenberg picture £ 12 not required to define the
basic concepts of the theory. Because of that, it is possible to define an extremely natural extension of the Heisenberg picture, which may deal with system in
which there 1s no hamiltoman time £.

The Heizenberg states are often introduced as the states at £ = 0. But they can also be interpreted, m a more fmdamental way, as a global (fime unrelated)
characterization of the state. These states are the quantum analog of the trajectories m the presymplectic formalism. The mterpretation of the Heisenberg states as
states representing the entire history of the system, has been stressed by Dirac [24] I the system admits a Schrédinger picture, we may represent the state
space of the Heizenberg picture in terms of the space of the Schrédinger states at ¢ = 0. Thiz is the analog of labelling the presymplectic trajectories by means

of therr ¢, coordmates at g, = 0. 1
similatly, Heisenberg observables correspond to the presymplectic obzervables. There 15 no Heisenberg observable cotresponding to the wvariable g; rather,

there 1s a one parameter set of observables Q( £ corresponding to the values of g atg, = £
When the system admits a classical hamiltoman formmulation, there 13 an haridtoman operator H and the Heizenberg observables are related by

Q(g _'_3.') — é‘im.lH Q(i ) e—z’n"fr"j':"’

Eq (207 is the quantum realization of the time structure. Tn differential form, it becomes
in8,0() = [Q(¢). H]

Tt is extremely important to emphasize that this equation is the quantum version of the Hamilton ecuation of motion (19, and it is also the Schrédinger equation,
as it looks in the Heisenberg picture.
MNow we arnive to our mam pomnt. In the classical systems without time (in the technical sense defined in sec. 2. 1) the Hamilton equation (1% does not hold. Ttis
reascenable to expect that i thewr quantum physics the corresponding eq.(21) would noy hold etther. In thosze systems, an evelving constant O T would
correspond to a quantum operator Q( T which does not satisfy eq.(20). The key pomnt 15 that this fact does not disturk the Heisenberg picture at all. The
Heizenberg picture 15 well defined also if the relation between Q( T obzervables at different 77z 12 not given by eq. (200,

What may go wrong in these systems, 15 that the set of all the observables an-( T at atived Tmay not form a complete set. If z0, a state i not charactenized by

its projection on the eigenstates of a Farmly of Q:‘( Tifor a fimed T This means that the outcome of the measurements of Q;‘( Ty for a fixed T does not umquely
characterize the state. MNamely, one cannot define a Schrédinger picture | (See ref[ 15] for a concrete example m which all that happens.)

Suppose a definition of the Hilbert space W of the Heizenberg states is given. Suppose the definition of Hetzenberg operators Q as self~adjomnt operators on H
1z also given. And suppose that among these operators there are also evolving constants Ol-( 7). Then, we can run the entire standard machinery of the

probabilistic interpretation of quantum mechanics: the sutcome of the measurement of a quantity O on a state ¢ iz an eigenvalue ¢ of the Q aperator; the
probability of getting ¢ is the modulus square of the projection of 4 on the g-eigenvector; and so on. All this makes sense also if the operaters &( T) do not
satisfy equation (21). (The equation they satisfy will be studied in zec 3.3

The Heisenberg states are the quantum version of the presymplectic states: they represent "hystories” of the system. The Heisenberg operators & cotrespond
directly to the presymplectic observables &, Among these, there are the quantum evelving constants a’j:( T, corresponding to the classical evolving constants
O (T I the classical system admits alse an hamiltonian forrmilation, then we have eq.(20), and we may define a Schrédinger picture. Ifit doesn’t (itis a
system without time), evervthing still malkes sense. But the Schrédinger picture canmot be defined.

Cuantum IMechanics may be synthesized in amomatic form (see, for instance, [25]). A set of amoms refers to the definttion of state and observable, to the
identification of the expectation walue of the measurement with the mean vahie of the operator and to the collapse of the wawe finction. One of the axioms
(Postulate P3 in [25]) refers to titne evolution; let us call it Time Awicm. In the Heizenberg picture, the Time Awiom requires that all the obzervables depend on
the a tune vanable ¢, and that an operator H exists such that that eq.(21) holds,

In the Heisenberg picture, the Tine Awom can be dropped without comprotmsing the other asoms and the probabilistic mterpretation of the theory. Thus, we
may formulate our basic proposal on the quantization of the classical systems without time.

1. We define the siructure given by the axioms of Heicenberg picture quanium mechanics, excluding the Time Axiom, quantum mechancs without time.
2. We suggest thai the guantum physics af the pregymplectic systems that don’t have a hamilfonian version, is governed by quantum mechanics without
time, as defined in 1.

General relatinty i3 one of these systems; thus, we suggest, non-perturbative quantum grawity 15 to be constructed in the framework of quantum mechanics
without time.

A quantum system wathout time 18 constructed in ref [15]. Tt quantizes the system (2). The Hilbert space 1z defined, and the operators that represent the evolution
of g5 as a finction of the clock time g are constructed. (Moere precisely, the corresponding self-adjomt projection operators are defined.) We urge the reader
to refer to that paper for a concrete implementation of the general theory discussed here.

In a quantum system without time, there may be an approzmation within which the Zchrédinger equation (21) holds. This 1z the way we expect standard
quantum mechanics may be recovered. If there 15 an approximate Schrédinger equation, the fact that the Schrédinger norm 13 only approzimately conserved is
qust a consequence of the approxmation and does not disturb the full theory. The quantum states of the model defined by eq.(8) admt [15] a representation of
the form

Wwla.aq)
They satisfy an approximate Schrédinger edquation

.y 3
—IESTIW(QP%) = Ml g1, a2 ) + amall ierms.

The norm

2

[[flCa, ) = ffffi’zwf(f?l:f?z)

obtaned by fizing the internal time ¢ | and mtegrating on the remaming vanables, 15 not censerved in g . But this norm 1z #of the one defined by the correct scalar
product of the theory. The fact that this norm is net conserved in ¢ does not contradict the probabilistic interpretation. It is as harmless as the fact that the
mtegral in g o of the modulus square of the wave function of a two -dimensional harmonie oscillator depends on g,

Finally et 112 dizriee the wrawe Ammcton collatce The fneaosiretnent of the mantbtr @ at the rlack tme Tie arcotmbatied B the oroiertion of the etate ot an
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eigenstate of the operator Q( T). The Heizenberg states get projected at any measurement. The mformation that the measurement iz petformed at the clock time
Tz contamned in the fact that the eigenstates of Q( T, on which the state gets projected, depend on T The question "when" the projection occurs 15
meaningless, sice the state does not evolwe,

But there seems to be a problem here. Projectors do not commute. Even if it is meaningless to say when the projections occur, nevertheless, the order in which
they occur iz not meaningless. But, unlike the hamiltordan time £, a clock time T may (classically) increase and then decrease along a trajectory. Thus, in general
T does not define an ordenng relation. How do we know the arder n which to perform the wave function prejections 7 If we replace the well-behaved £ by the
il-behaved T, how do we know how to order the collapses 7

In order to answer thiz question, we should notice that £ and the ordering of the collapzes are not necessarily related. This fact was emphasized by Dirac i ref
[24] and 15 cleatly discussed by Jin Hartle i ref [7]. The following example shows that tine and collapse -ordering may be unrelated. The formalism of quantum
mechanics allows a sequence of measurements not ordered in the time in which the system evolves. We can measure B{ £ ) and then A(¢") with” < ¢ The

wave function 15 projected twice. Firsi on the eigenstate of the 3(: J operator and them on the eigenstate of the A{ ¢*) operator. This sequence of projections
describes the conditional probability of bemg detected at 4( 27 ) for a particle that will be detected at BY £ 1. This probability 1s well defined in terms of frecquency.
One may think that both measuremernts have been performed many times, and we are requested to calculate the distibution of the A( £° ) outcomes knowing the
B0 17 outcomes.

The example suggests that the ordering of the collapses 15 not determined by ¢ Rather, the ordenng depends on the queséion that we want to formulate. The
ordenng is usually related to ¢ only because we are more interested in calculating the future than the past. If we want the probability that A has the walue @ at ¢,

given that 5 had or will have the value & at £, we have first to project on the b-eigenstate ofé( ¢ 1 and then on the a-eigenstate of A( 3, irrespectively of wiich
comes first between £ and £ Since the ordening of the projections 18 not determmined by the nautral ordering defined by ¢, we may replace ¢ with a clock variable
Tthat does not define any ordenng. The 1ssue deserves a more accurate analysis; yet, the previous discussion suggests that the collapse of the wawe function
should not cause problems of interpretation in quantium mechanics without tirne .

3.2 Quantization procedures and physical Hilbert structure.

In this section we consider certam problems that emerge in constructing the Heisenberg theory { C:?'!- 3 starting from a given presymplectic system (O w )
without time.
We discuss two quantization procedures. The first one 15 the standard one. The second one i more abstract and difficult to apply, but it 15 more complete.
“We agsume, from now on, that the presymplectic system is defined by constrammed hamiltonian systems with hamiltornian constramt (g, p,, ) and weakly
vatishing canomcal hamiltonian. A well known procedure for the quantization of any constrained systetn 15 the following [26]. One beging by quantizing the
unconstraned phase space. Let H be the state space and &, 2, be the resulting quantum state space and operators. The physical state subspace M g, 15
extracted by solving the constraint equations
=10
ont'H. The observables
Q= 00g, 2,
have to be well defined on M g, If s0, they must send H py, in itself In order this to be true, ) must commute (on H z) with X
(K] =0
It follows that the corresponding classical observable must have vatishing Poisson brackets with the constraint
(Hgppn) K, 2,0 =0
Mote that these observables are the ones which are constant along the orbits of the presymplectic system, and therefore thel are precisely the presymplectic
observables, as defined m section 2.1, The standard treatment of the constramed systems agrees with the basic rules for the presymplectic systems.
Ifthe procedure can be completed, it provides the (H p;, cf)!- 3 structure. The C&J;-( T observables that quantize the classical eveolving constants will be discussed
in the nesxt section.
In this program there are techmcal difficulties, like solwing the constraint equations and fnding and ordering the physical observables. There 15 also a general
problem: in general, the physical states that solve the constramnt equation have infinite norm i the natural Hilbert structure of H (this happens when @ 15 in the
contnuum spectrum of the constramnt operator, which 1s the usual case). Indeed, one has to define a new physical scalar product on the space of the solutions.
We discuss this problem here because this difficulty 15 sometimes taken as a proof that the quantum theoty cannot be defined in the absence of time. Indeed, let
us suppose there i3 a hamiltonian time variable ¢ among the arguments of the unconstrained wawve function. Then, there is a canondical way of finding the physical
scalar product. Cne defines the Schrédinger picture, and the fixed ¢ formulation provides a physical scalar product, given by the Lo structure in the rest of the
variables. The ewvolution in # is unitary and thus the definition does not dependent on the particular £ choszen.
Mow, does this mean that if the hamiltonian time ¢ doesn’t exst, then the scalar product cannot be defined ? The answer i3 no: in the general caze, we don’t have
this sumple prescription for constructing the physical scalar product; but this doesn’t mean that the physical scalar product cannot be defined. It just means that
we cantiot use the time structure as a hint for ts construction.
To find the physical scalar product is always a problem for axy constrained system in Dirac quantization. For instance, the same problem appears in non-abelian
Tang Mills theories, where it has far reaching consequences. The problem is not related to the absence of titme.
Inn erder to fix the physical scalar product, namely to add an Hilbert structure on the lnear space H g, the condifions that the scalar product has to satisfy must
be considered. Assume that the linear structure of the physical state space has been worked out (up, maybe, to completion issues). We have the linear space of
the solutions of the constramnt equations and a complete set of linear operators @z- on this space. How do we choose the scalar product 7 There 15 a key
condition on the choice. Mamely, the operators (5'!- have to be self-adjomt. (The notion of self- adjomtness depend on the scalar product.) This 15 a ughly non-
trivial condition on the scalar product. There are several examples that show that this requirement determines the Hilbert structure [27]. Thus, there iz a precize
rule for fizang the scalar product. Thiz rule works also for the quantum systems without time.
There exsts an alternative to Dirac quantization, which overcomes most of these difficulties [28]; in particular, it evercomes the difficulties of choosing the
physical scalar product. This alternative quantization prescription consists i directly quantizing the presymplectic system, rather than going through the
fuantization of the unconstrained system.
The main result of ref [ 28-2%] 12 that one can quantize the presymplectic system by looking for an operator realization of a closed and complete algebra of
presymplectic observables. This can be obtaned by finding a transtive group & of automoerphisms of the { O, w ) structure and choosing a unitary representation



4 ot i Lhis gquantization procedure makes use omly of the geometnc structure of the presymplectic space (L, w ). Agan, no speciicaton of the fime wvanable 15
needed m order to complete the quantization procedure. The problems of ordenng, selving the constraints, and picking the scalar product are bypassed. The

difficulty, of course, it to find (& 15

An example m which group theoretical methods provide a quantization of a systetn, without any reference to a choice of tume, 15 the strong coupling hrmt of
General Eelattoty [31] An example of a system without tune that can be quantized with group theoretical methods 12 grven ref [13].

3.3 Quantum evolving constants.

A basic clam of this paper 1z that the quantum obzervables must satisfy eq.(27) and must correspond to classical quantiies that satisfy eq. (28).
In ordinary constrained systems (with non-vanshing canotical hamiltonian), this result iz the standard requirement of gauge variance. In the systems we are
considering (with vatishing canonical harmiltoman) this result has often been rejected with the motivation that, if we restrict ourselves to the observables that
satisfy eq. (28), then we cannot descnbe evolution. According to to such wew, the hatmiltoman constraint generates dynamics and not gauges, and therefore, if we
want to describe quantities that evolve in time, we must have quantities that do not commute with & Then, of course, lotz of troubles follow, because an
opetrator that does not commute with £ is not well defined on the space of physical states, and the entire structure of quantum mechanics collapses.
such wewpoint i3 wrong, because it relies on the wrong assumphion that there is no way to describe time evolution in terms of ohservables that commute with &
Az we showed, the evolution iz well described by observables that commute with & These are the evelving constants, mtreduced in sec. 2.2, Thus, there 1sn’t
any reason for rejecting eqs (27) and (28). 16
o Ty, p, ) is the observable defined by eqe.(15) and (16), the comresponding quantun operater is defined by the corresponding quantum equations

(Q(T)LK] =0,

(@igr) = ¢

(the second equation can be more easily defined in a representation in which ¢ pis diagenal). The first is the fundamental equation that every observable must
satisfy. The second defines the specific observable. As in the classical case, dynarmics and kinematics are interrelated. If the explicit form of & Tg,,. 2, )18
known, then Q( T can be defined by choosing an ordering in

Q = O Ty, bn),
such that eq.(777) 1z satisfied. Ancther non-trivial condition on the ordermg follows from the fact that there should exst a scalar product such that all the quantum
observables are self-adjoint for every T,
The quantum analog of eq.(17) becomes

B an &) = 12,01,

This equation can be integrated to evolve Q:-( TimT
Ifthe presymplectic system corresponds to a hamiltoran system, and ¢, 15 a hamiltorian time, then there 1z an harniltonian, and, in parallel with eq.(18), eq.(32)
reduces to

iR 22— 19(e), )
This 15 the standard Schrédinger equation, written in the Heisenberg picture. Thus, as was anticipated in sec. 3.1, when a presymplectic system corresponds to a
hamiltonian system, the quantum evolwing constants are nothing but the standard Heizsenberg observables and the findamental equation (29) is nothing but the
Heisenberg picture wersion of the Schrédinger equation.
In conclusion, m the general case the basic equation for every observable 13 eq.{27). A particular class of observables 1z given by the the constants evolvng i a
clock time T = g g these are defined by eq.(777). Ifthe clock time happens te be a good harniltonian time, then the basic equation (777) reduces to the Schré
dinger ecuation for the ewvolving constants.
Evolution can be descnbed also m the absence of a hamiltonian time, and m the context of the basic canomcal quantum mechanics formahsm: Hilbert space, fmte
fiottn states, self~adjomnt operators.

Perspectives.
4.1. Quantum gravity.

We may now comne back to gravity, put together the different results, and put forward in a more precise form the solution of the time 1zs5ue that we propose.

In general relativity the notion of an absolute time £ is absent In place of it, internal time variables T that represent physical clocks can be identified "We belisve
that the choice of one of these clock times and itz the identification with the absolute tine ¢ of Hatilton mechanics i3 not only wery difficult, but it is irrelevant
and contrary to the basic physical ideas of general relativity.

Cuantum mechanics admits a natural extension, quantum mechamcs without tune, which can deal with systems m which an absolute hamultorian tune £ 15 not
defined. Quantum gravity, we propose, i3 described by thiz quantum theory without time.

In principle, the theery can be constructed as follows. The space M gy, of the solutions of the Wheeler-DeWitt equation is considered [33] A class of gquantum
operators that commute with the Wheeler-DeWitt constraint are constructed. Among these, there should be observables that express the evolution with respect
to a cleck variable. (Certain ebzervables of thiz kind have been constructed [16]) The scalar product is then cheosen on Hpp in such a way that the observables
are self-adjoint.

If this program can be completed, then the fundamental theory is complete. In principle, any outcome of any measurement can be computed, in terms of mean
values of the self-adjoint operators on the physical states.

We expect that the theory admits a choice of internal time T such that the ewolution of the obzervables in T iz given by a Schrédinger equation in T within a
certamn approxmation. Within this approsmmation, T behaves like an absolute tune £, and we are i the famidiar regime of standard quantum mechamcs. But we
also expect that the Schrédinger apprommation breaks down i the general case (at the Planke scale 7). At this fandamental level, time 15 not defined.

Tt is worth adding here a comment about quantum cosmology i order to avoid confusion. Tn a cquantum theory of the entire universe specific problems arise.
There iz the problem of maintaining the probabilistic interpretation if a single copy of the system is available, and the issue of the definition of a quantum theoty in
which the ohserver 12 part of the svstem.



Zince gravity 15 the basic mstrument for cosmology, the study of the umverse as a whole and the study of general relativity are often related. However, the
specific problems of quantum cosmelogy (like the one just mentioned) and the specific problems of quantum grasty (ke the time 15sue) are logically
mndependent. To be conwnced of this independence, consider that nothing prevents us from studmg the quantum cosmoelogy of a flat universe (with, say, just
Tang Wills fields). Alternatively, we can study the gravitational eld, and consider the observer and the other felds as external (of course, external i the
dynamnical sense, not i the space-time sense 1) In the first case we have a quantum cosmology with no gravity, in the second case we have a quantum gravity
which is not quantum cosmology.

Tt has been repeatedly suggested that the solution of the problems of quantum grawity recquire to consider the whole universe (zee for mstance ref [7]), and
therefore that quantum gravity and quantum cosmelogy should be studied together. This 15 a very interesting possibility. But just a possibiity. In this paper, we
have adopted the opposite philosophy. We considered the time 1ssue in quantum gravity and we neglected any cosmological question.

Ce can question quantum mechanics on the grounds that for the universe the interpretation of probabiity 15 problematic, or on the grounds that the theory
should nclude the observer. These problems are not connected with the gravitational field. The absence of a time vanable and of a Schrédinger equation, on the
contrary, which is a characteristic feature of the gravitational dynamics, does not spoil the standard interpretation of fuantum mechanics.

Then, there isn't any problem in the interpretation of the wawe function in quantum gravity. Quantum mechanics (without the Time Asiom) prowvides a precise and
well-defined scheme of interpretation. Ilost of the confusion on issues concerning mterpretation 15 generated by asking non gauge -invanant questions. Very
often, in the quantization of models, too little attention is put n the key requirement of gauge invanance of the cbservables (eq.(27) 1), and in the requirement (on
the scalar product) that the gauge nvanant observable must be self~adjomt.

|2

In particular, the popular interpretation of |1 g]|”, as the probabiity of measuning the 3-geometry g, 15 wrong. |1,£r[g:||2 18 not a gauge wvanant quantity. Only

quantities of the kind = f,.")|@|f,{'} = where Q commutes with the Wheeler-DeWitt constraint, have physical meaning.

4.2, Problems and comments.

We do not thnk that the proposed solution of the tune 1ssue 15 clear and complete. Both at the techmcal and at the conceptual level, there are poants that rermean
open or unclear.

Physically, not any variable can be used as a clock. We relazed the requirement that a clock variable T must be a hatmiltoman time. However, we did not
provide any alternative definition of a "time" variable. What does characterize the physical variables T that can be used as clocks ¥ To our wiew, this is an open
fuestion.

A related techmical question s the compatibility of the two equations (777) and (777) that define the evelving observables. It is clear from the geometrical picture
that ff {gp, X} = 0, equation (17) cannot be integrated. In the general case, the functional relation that an orbit defines between two vanables 13 only wnplicit.
£ T may be multivalued. Physically, there is nothing wrong with that, but the definttions should be adjusted. If an orbit mtersects ¢ p = T M pomts P, ,, we

may introduce b observables Q(m] such that

0" () = a(P,).
and so on. In other words, eq.{16) should be replaced by a weaker equation. The detads should be worked out.
£ T may defined only on a bounded mterval. This mterval may depend on the orbit. Thus, there are values of Tior which O T) 15 defined only i certain

regions of O Cutside these regions, O T may becomes complex. In the quantum domain, this implies that the operator Q;‘( T) may have complex ejgenvalues,
atid therefore 15 not selfadjoint.

A way out iz provided in ref[ 15]. The idea i3 to use the projection operators on the eigenstates of Q( i (@( T 15 still symnetric) corresponding to real

eigenvalues mstead of @( T itzelf. The projectors are self-adjomnt and correspond to the basic ves/no experimental observations. The prezent paper iz more
conceptual than technical and, on the purpose of clartty, we did not use the projectors formalism. But we think the projector formalism 1s very likely to be the
cotrect formalism in the general case.

Finally, assurming that the hypothesis we are presenting 15 realistic, developing a physical intution of the systems with ne time 15 a non- trivial problem. Simple
models [15,17,32] may help. In the model m ref [15], the clock time fails to be a good time because of global properties of the orbits. Locally, the system
behaves as a harmltoman system, but on the entire orbat one has to patch different imes. The topology of the orbit 15 closed and there 15 no way to map R
smoothly onto an orbit,

An interesting relation between global properties of the orbits and small scale measurements etnerges i this model IF one measures a variable in a quasi-classical
state with a high precision, the state is severely affected by the collapse. The collapse excites components of the wawe function, which correspond to classical
trajectories in which the clock variable reverses its direction right away.

It 15 tempting to speculate that thiz behavior could be general. Supposze that in gravity we take the growing radiuz & of the umiverse as a clock vanable. Since the
umiverse may recollapse, there are orbits for which £ "goes back". One can speculate that a measurement which implies a Plank scale precision may project the
state of the grawmtational feld on components of the wawve function which correspond to a untverse that would wrrnediately start to recontract. Thus, Plank scale
measuretments may destroy the unitarity of the evolution in &

Apart from these (wild) speculations, the example suggests two ways in which a realistic grawvitational systemn without tine may be concretely thought. One is to
recall that it is difficult to imagine that in general relativity there could be a good clock that may run forever on asmy solution of Einstein ecquations (recall that most
solutions develop singularities). The second (maybe related) one is to think that non-time behawor may appear at very shott time intervals. More precisely, that
there may be physical reasons for which there are no good clocks that resolve time below the Planck time.

4.3 Conclusions.

In this paper, we propose a solution to the problem of time in quantum grawity, "We make the hypothesis that the concept of absclute time £, as used in
hamiltonian mechanics as well as in Schrédinger quantum mechanics, is not relevant in a fundamental description of quantum gravity.

This time has to be replaced by arbitrary clock times T in terms of which the dynamics may not be of the Schrédinger form. The motivation for this hypothesis iz
that m general relativity there 1z no observable abselute time. & hamittoman formulation of gravity in strict zense (choice of a clock time T and the identification of
Twith the harmltoman time) 15 contrary to the basic physical ideas of general relativity and irrefevant for the quantization.

An extension of quantum mechamcs, which does not need £, is required, m order to incorporate i quantum mechanics the physical ideas of general relatity.
This extension {quantium mechanics without time) 13 defined i a very natural way, by just dropping the Time Axiom from the Heisenberg picture.

In a quantun mechanical system without time, the Schrédinger equation (which i the Heisenberg picture 13 Q = ifi[@, ;9]) 15 replaced by the equation
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evolution in T may be non-unitary, the probabiistic interpretation iz wable. Thitary evolution and Schrédinger equation may be recovered within an
approzimation.

Az far az the problem of time 15 concemed, in a quantum theory of gravity there 13 ne need to give up the probabaistic interpretation of the wave function, Hilbert
space, Hmte norm states and self- adjomt operators corresponding to observables. The notion of absolute time 15 not necessary, and we thinl: that the difficultes
i dealing with a theoty without time are only psychological. We suggest that, i loolang for a quantum gravity theory, "tine " should sinply be forgotten.

Cur proposal i3 in a sense conservative and in a sense radical Tt is conservative, since we keep as much of general relativity, and as trmuch of standard quantum
mechanics as possible. Our philozophy is that general relativity and quantum mechanics summarize our basic knowledge of the wotld, and we shouldn’t change
them, unless forced by experiments or by a requirement of internal consistency. Tt iz radical, because we assume that at the fundamental level time is not defined.
Thus, a radical revision of a familiar concept 15 required. However, this moedification of the concept of time (with respect to the time of Hamilton mechanics), is
forced by general relativity itself, and implictt i its formahism. The proposed extension of quantum mechanics 15 nething but the msertion of this revised concept of
tune 1 the basic structure of the quantum formalistm, The fact that this can be done so naturally 13, for us, a good sign.

Of course, the proposed zolution of the time 1zsue iz only an hypothesis. In order to verify this hypothesis, a non-perturbative quantum gravitational theory has to
be constructed. In spite of recent progress in this direction [33], 1t 13 well known that there are major technical difficulties i the actual construction of a canomical
cuantum theory of gravity. Tn this paper we have tried to resolve an a prios difficulty, which could have undermined canonical quantization. "We have shown that
a conceptual frameworl in which time in quantum gravity is not a problem for the canonical theoty, does exst. Whether nature chooses this conceptual
framework or not, iz an open question.
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Bertott, Bryce De"Witt, A1 Jaris, Jim Hartle, Catlos Eozameh, Ted Mewman, Eaphasl Sorkin and Warco Toller for usefil suggestions and mteresting exchanges
of ideas. This work was supported by the I5F grant PHY -20120%9.
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Ahstract

A zolution to the 1ssue of itne in quantum gravity 15 proposed. The hypothesis that time 15 not defined at the findamental level (at the Plack scale) i3 considered.
A natural extension of canonical Hetsenberg-picture quantium mechanics i3 defined. It 1z shown that this estension 15 well defined and can be used to describe the
“non-Schrédinger regime®, in which a fiundamental time variable is not defined.
This conclusion rests on a detailed analysis of which quantities are the physical observables of the theoty; a main technical result of the paper iz the identification
of a class of gauge-inwaniant obzervables that can describe the (observable) ewolution in the absence of a findamental definition of time.
The choice of the scalar product and the mterpretation of the wave finction are carefully discussed. The physical mterpretation of the extreme “no time”
quantum gravitational physics 12 considered.
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